The relationship between cortical magnification factor and population receptive field size in human visual cortex: constancies in cortical architecture.
نویسندگان
چکیده
Receptive field (RF) sizes and cortical magnification factor (CMF) are fundamental organization properties of the visual cortex. At increasing visual eccentricity, RF sizes increase and CMF decreases. A relationship between RF size and CMF suggests constancies in cortical architecture, as their product, the cortical representation of an RF (point image), may be constant. Previous animal neurophysiology studies of this question yield conflicting results. Here, we use fMRI to determine the relationship between the population RF (pRF) and CMF in humans. In average and individual data, the product of CMF and pRF size, the population point image, is near constant, decreasing slightly with eccentricity in V1. Interhemisphere and subject variations in CMF, pRF size, and V1 surface area are correlated, and the population point image varies less than these properties. These results suggest a V1 cortical processing architecture of approximately constant size between humans. Up the visual hierarchy, to V2, V3, hV4, and LO1, the population point image decreases with eccentricity, and both the absolute values and rate of change increase. PRF sizes increase between visual areas and with eccentricity, but when expressed in V1 cortical surface area (i.e., corticocortical pRFs), they are constant across eccentricity in V2/V3. Thus, V2/V3, and to some degree hV4, sample from a constant extent of V1. This may explain population point image changes in later areas. Consequently, the constant factor determining pRF size may not be the relationship to the local CMF, but rather pRF sizes and CMFs in visual areas from which the pRF samples.
منابع مشابه
Somatosensory Cortex in Owl Monkeys
1. Several features of the two complete and separate representations of the contralateral body surface in cortical areas 3b and 1 of somatosensory cortex in owl monkeys were quantitatively studied. 2. Area1 magnification factors for different body regions in the two representations were obtained. The glabrous hand and foot regions were found to occupy nearly 100 times more cortical tissue per u...
متن کاملPhosphene induction by microstimulation of macaque V1.
Non-human primates are being used to develop a cortical visual prosthesis for the blind. We use the properties of electrical microstimulation of striate cortex (area V1) of macaque monkeys to make inferences about phosphene induction. Our analysis is based on well-established properties of V1: retino-cortical magnification factor, receptive-field size, and the characteristics of hypercolumns. W...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملThe visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability.
The topographic organization of striate cortex in the macaque was studied using physiological recording techniques. Results were displayed on two-dimensional maps of the cortex, which facilitated the quantitative analysis of various features of the visual representation. The representation was found to be asymmetric with more cortex devoted to lower than to upper fields. Over much of striate co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 38 شماره
صفحات -
تاریخ انتشار 2011